Microsoft Sentinel Analytic Rules
cloudbrothers.infoAzure Sentinel RepoToggle Dark/Light/Auto modeToggle Dark/Light/Auto modeToggle Dark/Light/Auto modeBack to homepage

Outgoing connection attempts stateful anomaly on database

Back
Idc105513d-e398-4a02-bd91-54b9b2d6fa7d
RulenameOutgoing connection attempts stateful anomaly on database
DescriptionThis query detects batches of distinct SQL queries that execute (or attempt to) commands that could indicate potential security issues - such as attempts to access external sites or resources (e.g. for downloading malicious content).
SeverityMedium
TacticsInitialAccess
TechniquesT1190
Required data connectorsAzureSql
KindScheduled
Query frequency1h
Query period14d
Trigger threshold0
Trigger operatorgt
Source Urihttps://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Azure SQL Database solution for sentinel/Analytic Rules/Detection-HotwordsOutgoingStatefulAnomalyOnDatabase.yaml
Version1.1.1
Arm templatec105513d-e398-4a02-bd91-54b9b2d6fa7d.json
Deploy To Azure
let monitoredStatementsThreshold = 1;           // Minimal number of monitored statements in the slice to trigger an anomaly.
let trainingSlicesThreshold = 5;                // The maximal amount of slices with monitored statements in the training window before anomaly detection is throttled.
let timeSliceSize = 1h;                         // The size of the single timeSlice for individual aggregation.
let detectionWindow = 1h;                       // The size of the recent detection window for detecting anomalies.  
let trainingWindow = detectionWindow + 14d;     // The size of the training window before the detection window for learning the normal state.
let hotwords = pack_array('http:', 'https:', 'ftp:', 'onion.pet'); // List of monitored hot words.
let processedData = materialize (
    AzureDiagnostics
    | where TimeGenerated >= ago(trainingWindow)
    | where Category == 'SQLSecurityAuditEvents' and action_id_s has_any ("RCM", "BCM") // Keep only SQL affected rows
    | project TimeGenerated, PrincipalName = server_principal_name_s, ClientIp = client_ip_s, HostName = host_name_s, ResourceId,
              ApplicationName = application_name_s, ActionName = action_name_s, Database = strcat(LogicalServerName_s, '/', database_name_s),
              IsSuccess = succeeded_s, AffectedRows = affected_rows_d,
              ResponseRows = response_rows_d, Statement = statement_s,
              Error = case( additional_information_s has 'error_code', toint(extract("<error_code>([0-9.]+)", 1, additional_information_s))
                    , additional_information_s has 'failure_reason', toint(extract("<failure_reason>Err ([0-9.]+)", 1, additional_information_s))
                    , 0),
              State = case( additional_information_s has 'error_state', toint(extract("<error_state>([0-9.]+)", 1, additional_information_s))
                    , additional_information_s has 'failure_reason', toint(extract("<failure_reason>Err ([0-9.]+), Level ([0-9.]+)", 2, additional_information_s))
                    , 0),
              AdditionalInfo = additional_information_s, timeSlice = floor(TimeGenerated, timeSliceSize)
    | extend hasHotword = iff(Statement has_any (hotwords), 1, 0)
    | summarize countEvents = count(), countStatements = dcount(Statement)
        , countStatementsWithHotwords = dcountif(Statement, hasHotword == 1)
        , countFailedStatementsWithHotwords = dcountif(Statement, (hasHotword == 1) and (Error > 0))
        , countSuccessfulStatementsWithHotwords = dcountif(Statement, ((hasHotword == 1)) and (Error == 0))
        , anyMonitoredStatement = anyif(Statement, (hasHotword == 1))
        , anySuccessfulMonitoredStatement = anyif(Statement, (hasHotword == 1) and (Error == 0))
        , anyInfo = anyif(AdditionalInfo, hasHotword == 1)
        , hotWord = anyif(extract(strcat_array(hotwords, '|'), 0, tolower(Statement)), hasHotword == 1)
        by Database, ClientIp, ApplicationName, PrincipalName, timeSlice,HostName,ResourceId   
    | extend WindowType = case( timeSlice >= ago(detectionWindow), 'detection',
                                           (ago(trainingWindow) <= timeSlice and timeSlice < ago(detectionWindow)), 'training', 'other')
    | where WindowType in ('detection', 'training'));
let trainingSet =
    processedData
    | where WindowType == 'training'
    | summarize countSlicesWithHotwords = dcountif(timeSlice, countStatementsWithHotwords >= monitoredStatementsThreshold)
        by Database;
processedData
| where WindowType == 'detection' 
| join kind = inner (trainingSet) on Database
| extend IsHotwordAnomalyOnStatement = iff(((countStatementsWithHotwords >= monitoredStatementsThreshold) and (countSlicesWithHotwords <= trainingSlicesThreshold)), true, false)
    , anomalyScore = round(countStatementsWithHotwords/monitoredStatementsThreshold, 0)
| where IsHotwordAnomalyOnStatement == 'true'
| sort by countSuccessfulStatementsWithHotwords desc,  anomalyScore desc, timeSlice desc
| extend Name = tostring(split(PrincipalName,'@',0)[0]), UPNSuffix = tostring(split(PrincipalName,'@',1)[0])    
id: c105513d-e398-4a02-bd91-54b9b2d6fa7d
tactics:
- InitialAccess
queryPeriod: 14d
OriginalUri: https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Azure SQL Database solution for sentinel/Analytic Rules/Detection-HotwordsOutgoingStatefulAnomalyOnDatabase.yaml
triggerThreshold: 0
name: Outgoing connection attempts stateful anomaly on database
query: |
  let monitoredStatementsThreshold = 1;           // Minimal number of monitored statements in the slice to trigger an anomaly.
  let trainingSlicesThreshold = 5;                // The maximal amount of slices with monitored statements in the training window before anomaly detection is throttled.
  let timeSliceSize = 1h;                         // The size of the single timeSlice for individual aggregation.
  let detectionWindow = 1h;                       // The size of the recent detection window for detecting anomalies.  
  let trainingWindow = detectionWindow + 14d;     // The size of the training window before the detection window for learning the normal state.
  let hotwords = pack_array('http:', 'https:', 'ftp:', 'onion.pet'); // List of monitored hot words.
  let processedData = materialize (
      AzureDiagnostics
      | where TimeGenerated >= ago(trainingWindow)
      | where Category == 'SQLSecurityAuditEvents' and action_id_s has_any ("RCM", "BCM") // Keep only SQL affected rows
      | project TimeGenerated, PrincipalName = server_principal_name_s, ClientIp = client_ip_s, HostName = host_name_s, ResourceId,
                ApplicationName = application_name_s, ActionName = action_name_s, Database = strcat(LogicalServerName_s, '/', database_name_s),
                IsSuccess = succeeded_s, AffectedRows = affected_rows_d,
                ResponseRows = response_rows_d, Statement = statement_s,
                Error = case( additional_information_s has 'error_code', toint(extract("<error_code>([0-9.]+)", 1, additional_information_s))
                      , additional_information_s has 'failure_reason', toint(extract("<failure_reason>Err ([0-9.]+)", 1, additional_information_s))
                      , 0),
                State = case( additional_information_s has 'error_state', toint(extract("<error_state>([0-9.]+)", 1, additional_information_s))
                      , additional_information_s has 'failure_reason', toint(extract("<failure_reason>Err ([0-9.]+), Level ([0-9.]+)", 2, additional_information_s))
                      , 0),
                AdditionalInfo = additional_information_s, timeSlice = floor(TimeGenerated, timeSliceSize)
      | extend hasHotword = iff(Statement has_any (hotwords), 1, 0)
      | summarize countEvents = count(), countStatements = dcount(Statement)
          , countStatementsWithHotwords = dcountif(Statement, hasHotword == 1)
          , countFailedStatementsWithHotwords = dcountif(Statement, (hasHotword == 1) and (Error > 0))
          , countSuccessfulStatementsWithHotwords = dcountif(Statement, ((hasHotword == 1)) and (Error == 0))
          , anyMonitoredStatement = anyif(Statement, (hasHotword == 1))
          , anySuccessfulMonitoredStatement = anyif(Statement, (hasHotword == 1) and (Error == 0))
          , anyInfo = anyif(AdditionalInfo, hasHotword == 1)
          , hotWord = anyif(extract(strcat_array(hotwords, '|'), 0, tolower(Statement)), hasHotword == 1)
          by Database, ClientIp, ApplicationName, PrincipalName, timeSlice,HostName,ResourceId   
      | extend WindowType = case( timeSlice >= ago(detectionWindow), 'detection',
                                             (ago(trainingWindow) <= timeSlice and timeSlice < ago(detectionWindow)), 'training', 'other')
      | where WindowType in ('detection', 'training'));
  let trainingSet =
      processedData
      | where WindowType == 'training'
      | summarize countSlicesWithHotwords = dcountif(timeSlice, countStatementsWithHotwords >= monitoredStatementsThreshold)
          by Database;
  processedData
  | where WindowType == 'detection' 
  | join kind = inner (trainingSet) on Database
  | extend IsHotwordAnomalyOnStatement = iff(((countStatementsWithHotwords >= monitoredStatementsThreshold) and (countSlicesWithHotwords <= trainingSlicesThreshold)), true, false)
      , anomalyScore = round(countStatementsWithHotwords/monitoredStatementsThreshold, 0)
  | where IsHotwordAnomalyOnStatement == 'true'
  | sort by countSuccessfulStatementsWithHotwords desc,  anomalyScore desc, timeSlice desc
  | extend Name = tostring(split(PrincipalName,'@',0)[0]), UPNSuffix = tostring(split(PrincipalName,'@',1)[0])      
severity: Medium
triggerOperator: gt
kind: Scheduled
relevantTechniques:
- T1190
tags:
- SQL
queryFrequency: 1h
requiredDataConnectors:
- connectorId: AzureSql
  dataTypes:
  - AzureDiagnostics
description: |
    'This query detects batches of distinct SQL queries that execute (or attempt to) commands that could indicate potential security issues - such as attempts to access external sites or resources (e.g. for downloading malicious content).'
status: Available
version: 1.1.1
entityMappings:
- fieldMappings:
  - columnName: Name
    identifier: Name
  - columnName: UPNSuffix
    identifier: UPNSuffix
  entityType: Account
- fieldMappings:
  - columnName: ClientIp
    identifier: Address
  entityType: IP
- fieldMappings:
  - columnName: HostName
    identifier: HostName
  entityType: Host
- fieldMappings:
  - columnName: ApplicationName
    identifier: Name
  entityType: CloudApplication
- fieldMappings:
  - columnName: ResourceId
    identifier: ResourceId
  entityType: AzureResource
{
  "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
  "contentVersion": "1.0.0.0",
  "parameters": {
    "workspace": {
      "type": "String"
    }
  },
  "resources": [
    {
      "apiVersion": "2024-01-01-preview",
      "id": "[concat(resourceId('Microsoft.OperationalInsights/workspaces/providers', parameters('workspace'), 'Microsoft.SecurityInsights'),'/alertRules/c105513d-e398-4a02-bd91-54b9b2d6fa7d')]",
      "kind": "Scheduled",
      "name": "[concat(parameters('workspace'),'/Microsoft.SecurityInsights/c105513d-e398-4a02-bd91-54b9b2d6fa7d')]",
      "properties": {
        "alertRuleTemplateName": "c105513d-e398-4a02-bd91-54b9b2d6fa7d",
        "customDetails": null,
        "description": "'This query detects batches of distinct SQL queries that execute (or attempt to) commands that could indicate potential security issues - such as attempts to access external sites or resources (e.g. for downloading malicious content).'\n",
        "displayName": "Outgoing connection attempts stateful anomaly on database",
        "enabled": true,
        "entityMappings": [
          {
            "entityType": "Account",
            "fieldMappings": [
              {
                "columnName": "Name",
                "identifier": "Name"
              },
              {
                "columnName": "UPNSuffix",
                "identifier": "UPNSuffix"
              }
            ]
          },
          {
            "entityType": "IP",
            "fieldMappings": [
              {
                "columnName": "ClientIp",
                "identifier": "Address"
              }
            ]
          },
          {
            "entityType": "Host",
            "fieldMappings": [
              {
                "columnName": "HostName",
                "identifier": "HostName"
              }
            ]
          },
          {
            "entityType": "CloudApplication",
            "fieldMappings": [
              {
                "columnName": "ApplicationName",
                "identifier": "Name"
              }
            ]
          },
          {
            "entityType": "AzureResource",
            "fieldMappings": [
              {
                "columnName": "ResourceId",
                "identifier": "ResourceId"
              }
            ]
          }
        ],
        "OriginalUri": "https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Azure SQL Database solution for sentinel/Analytic Rules/Detection-HotwordsOutgoingStatefulAnomalyOnDatabase.yaml",
        "query": "let monitoredStatementsThreshold = 1;           // Minimal number of monitored statements in the slice to trigger an anomaly.\nlet trainingSlicesThreshold = 5;                // The maximal amount of slices with monitored statements in the training window before anomaly detection is throttled.\nlet timeSliceSize = 1h;                         // The size of the single timeSlice for individual aggregation.\nlet detectionWindow = 1h;                       // The size of the recent detection window for detecting anomalies.  \nlet trainingWindow = detectionWindow + 14d;     // The size of the training window before the detection window for learning the normal state.\nlet hotwords = pack_array('http:', 'https:', 'ftp:', 'onion.pet'); // List of monitored hot words.\nlet processedData = materialize (\n    AzureDiagnostics\n    | where TimeGenerated >= ago(trainingWindow)\n    | where Category == 'SQLSecurityAuditEvents' and action_id_s has_any (\"RCM\", \"BCM\") // Keep only SQL affected rows\n    | project TimeGenerated, PrincipalName = server_principal_name_s, ClientIp = client_ip_s, HostName = host_name_s, ResourceId,\n              ApplicationName = application_name_s, ActionName = action_name_s, Database = strcat(LogicalServerName_s, '/', database_name_s),\n              IsSuccess = succeeded_s, AffectedRows = affected_rows_d,\n              ResponseRows = response_rows_d, Statement = statement_s,\n              Error = case( additional_information_s has 'error_code', toint(extract(\"<error_code>([0-9.]+)\", 1, additional_information_s))\n                    , additional_information_s has 'failure_reason', toint(extract(\"<failure_reason>Err ([0-9.]+)\", 1, additional_information_s))\n                    , 0),\n              State = case( additional_information_s has 'error_state', toint(extract(\"<error_state>([0-9.]+)\", 1, additional_information_s))\n                    , additional_information_s has 'failure_reason', toint(extract(\"<failure_reason>Err ([0-9.]+), Level ([0-9.]+)\", 2, additional_information_s))\n                    , 0),\n              AdditionalInfo = additional_information_s, timeSlice = floor(TimeGenerated, timeSliceSize)\n    | extend hasHotword = iff(Statement has_any (hotwords), 1, 0)\n    | summarize countEvents = count(), countStatements = dcount(Statement)\n        , countStatementsWithHotwords = dcountif(Statement, hasHotword == 1)\n        , countFailedStatementsWithHotwords = dcountif(Statement, (hasHotword == 1) and (Error > 0))\n        , countSuccessfulStatementsWithHotwords = dcountif(Statement, ((hasHotword == 1)) and (Error == 0))\n        , anyMonitoredStatement = anyif(Statement, (hasHotword == 1))\n        , anySuccessfulMonitoredStatement = anyif(Statement, (hasHotword == 1) and (Error == 0))\n        , anyInfo = anyif(AdditionalInfo, hasHotword == 1)\n        , hotWord = anyif(extract(strcat_array(hotwords, '|'), 0, tolower(Statement)), hasHotword == 1)\n        by Database, ClientIp, ApplicationName, PrincipalName, timeSlice,HostName,ResourceId   \n    | extend WindowType = case( timeSlice >= ago(detectionWindow), 'detection',\n                                           (ago(trainingWindow) <= timeSlice and timeSlice < ago(detectionWindow)), 'training', 'other')\n    | where WindowType in ('detection', 'training'));\nlet trainingSet =\n    processedData\n    | where WindowType == 'training'\n    | summarize countSlicesWithHotwords = dcountif(timeSlice, countStatementsWithHotwords >= monitoredStatementsThreshold)\n        by Database;\nprocessedData\n| where WindowType == 'detection' \n| join kind = inner (trainingSet) on Database\n| extend IsHotwordAnomalyOnStatement = iff(((countStatementsWithHotwords >= monitoredStatementsThreshold) and (countSlicesWithHotwords <= trainingSlicesThreshold)), true, false)\n    , anomalyScore = round(countStatementsWithHotwords/monitoredStatementsThreshold, 0)\n| where IsHotwordAnomalyOnStatement == 'true'\n| sort by countSuccessfulStatementsWithHotwords desc,  anomalyScore desc, timeSlice desc\n| extend Name = tostring(split(PrincipalName,'@',0)[0]), UPNSuffix = tostring(split(PrincipalName,'@',1)[0])    \n",
        "queryFrequency": "PT1H",
        "queryPeriod": "P14D",
        "severity": "Medium",
        "status": "Available",
        "subTechniques": [],
        "suppressionDuration": "PT1H",
        "suppressionEnabled": false,
        "tactics": [
          "InitialAccess"
        ],
        "tags": [
          "SQL"
        ],
        "techniques": [
          "T1190"
        ],
        "templateVersion": "1.1.1",
        "triggerOperator": "GreaterThan",
        "triggerThreshold": 0
      },
      "type": "Microsoft.OperationalInsights/workspaces/providers/alertRules"
    }
  ]
}