Process Execution Frequency Anomaly
| Id | 2c55fe7a-b06f-4029-a5b9-c54a2320d7b8 | 
| Rulename | Process Execution Frequency Anomaly | 
| Description | This detection identifies anomalous spike in frequency of executions of sensitive processes which are often leveraged as attack vectors. The query leverages KQL’s built-in anomaly detection algorithms to find large deviations from baseline patterns. Sudden increases in execution frequency of sensitive processes should be further investigated for malicious activity. Tune the values from 1.5 to 3 in series_decompose_anomalies for further outliers or based on custom threshold values for score.  | 
| Severity | Medium | 
| Tactics | Execution | 
| Techniques | T1059 | 
| Required data connectors | SecurityEvents WindowsSecurityEvents  | 
| Kind | Scheduled | 
| Query frequency | 1d | 
| Query period | 14d | 
| Trigger threshold | 0 | 
| Trigger operator | gt | 
| Source Uri | https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Windows Security Events/Analytic Rules/TimeSeriesAnomaly-ProcessExecutions.yaml | 
| Version | 1.0.6 | 
| Arm template | 2c55fe7a-b06f-4029-a5b9-c54a2320d7b8.json | 
let starttime = 14d;
let endtime = 1d;
let timeframe = 1h;
let TotalEventsThreshold = 5;
// Configure the list with sensitive process names 
let ExeList = dynamic(["powershell.exe","cmd.exe","wmic.exe","psexec.exe","cacls.exe","rundll32.exe"]);
let TimeSeriesData =
SecurityEvent
| where EventID == 4688 | extend Process = tolower(Process)
| where TimeGenerated between (startofday(ago(starttime))..startofday(ago(endtime)))
| where Process in~ (ExeList)
| project TimeGenerated, Computer, AccountType, Account, Process
| make-series Total=count() on TimeGenerated from startofday(ago(starttime)) to startofday(ago(endtime)) step timeframe by Process;
let TimeSeriesAlerts = materialize(TimeSeriesData
| extend (anomalies, score, baseline) = series_decompose_anomalies(Total, 1.5, -1, 'linefit')
| mv-expand Total to typeof(double), TimeGenerated to typeof(datetime), anomalies to typeof(double), score to typeof(double), baseline to typeof(long)
| where anomalies > 0
| project Process, TimeGenerated, Total, baseline, anomalies, score
| where Total > TotalEventsThreshold);
let AnomalyHours = materialize(TimeSeriesAlerts  | where TimeGenerated > ago(2d) | project TimeGenerated);
TimeSeriesAlerts
| where TimeGenerated > ago(2d)
| join (
SecurityEvent
| where TimeGenerated between (startofday(ago(starttime))..startofday(ago(endtime)))
| extend DateHour = bin(TimeGenerated, 1h) // create a new column and round to hour
| where DateHour in ((AnomalyHours)) //filter the dataset to only selected anomaly hours
| where EventID == 4688 | extend Process = tolower(Process)
| summarize CommandlineCount = count() by bin(TimeGenerated, 1h), Process, CommandLine, Computer, Account
) on Process, TimeGenerated
| project AnomalyHour = TimeGenerated, Computer, Account, Process, CommandLine, CommandlineCount, Total, baseline, anomalies, score
| extend timestamp = AnomalyHour, NTDomain = split(Account, '\\', 0)[0], Name = split(Account, '\\', 1)[0], HostName = tostring(split(Computer, '.', 0)[0]), DnsDomain = tostring(strcat_array(array_slice(split(Computer, '.'), 1, -1), '.'))
kind: Scheduled
entityMappings:
- entityType: Account
  fieldMappings:
  - columnName: Account
    identifier: FullName
  - columnName: Name
    identifier: Name
  - columnName: NTDomain
    identifier: NTDomain
- entityType: Host
  fieldMappings:
  - columnName: Computer
    identifier: FullName
  - columnName: HostName
    identifier: HostName
  - columnName: DnsDomain
    identifier: DnsDomain
description: |
  'This detection identifies anomalous spike in frequency of executions of sensitive processes which are often leveraged as attack vectors.
  The query leverages KQL's built-in anomaly detection algorithms to find large deviations from baseline patterns.
  Sudden increases in execution frequency of sensitive processes should be further investigated for malicious activity.
  Tune the values from 1.5 to 3 in series_decompose_anomalies for further outliers or based on custom threshold values for score.'  
severity: Medium
queryFrequency: 1d
triggerThreshold: 0
relevantTechniques:
- T1059
status: Available
tactics:
- Execution
name: Process Execution Frequency Anomaly
id: 2c55fe7a-b06f-4029-a5b9-c54a2320d7b8
query: |
  let starttime = 14d;
  let endtime = 1d;
  let timeframe = 1h;
  let TotalEventsThreshold = 5;
  // Configure the list with sensitive process names 
  let ExeList = dynamic(["powershell.exe","cmd.exe","wmic.exe","psexec.exe","cacls.exe","rundll32.exe"]);
  let TimeSeriesData =
  SecurityEvent
  | where EventID == 4688 | extend Process = tolower(Process)
  | where TimeGenerated between (startofday(ago(starttime))..startofday(ago(endtime)))
  | where Process in~ (ExeList)
  | project TimeGenerated, Computer, AccountType, Account, Process
  | make-series Total=count() on TimeGenerated from startofday(ago(starttime)) to startofday(ago(endtime)) step timeframe by Process;
  let TimeSeriesAlerts = materialize(TimeSeriesData
  | extend (anomalies, score, baseline) = series_decompose_anomalies(Total, 1.5, -1, 'linefit')
  | mv-expand Total to typeof(double), TimeGenerated to typeof(datetime), anomalies to typeof(double), score to typeof(double), baseline to typeof(long)
  | where anomalies > 0
  | project Process, TimeGenerated, Total, baseline, anomalies, score
  | where Total > TotalEventsThreshold);
  let AnomalyHours = materialize(TimeSeriesAlerts  | where TimeGenerated > ago(2d) | project TimeGenerated);
  TimeSeriesAlerts
  | where TimeGenerated > ago(2d)
  | join (
  SecurityEvent
  | where TimeGenerated between (startofday(ago(starttime))..startofday(ago(endtime)))
  | extend DateHour = bin(TimeGenerated, 1h) // create a new column and round to hour
  | where DateHour in ((AnomalyHours)) //filter the dataset to only selected anomaly hours
  | where EventID == 4688 | extend Process = tolower(Process)
  | summarize CommandlineCount = count() by bin(TimeGenerated, 1h), Process, CommandLine, Computer, Account
  ) on Process, TimeGenerated
  | project AnomalyHour = TimeGenerated, Computer, Account, Process, CommandLine, CommandlineCount, Total, baseline, anomalies, score
  | extend timestamp = AnomalyHour, NTDomain = split(Account, '\\', 0)[0], Name = split(Account, '\\', 1)[0], HostName = tostring(split(Computer, '.', 0)[0]), DnsDomain = tostring(strcat_array(array_slice(split(Computer, '.'), 1, -1), '.'))  
requiredDataConnectors:
- dataTypes:
  - SecurityEvent
  connectorId: SecurityEvents
- dataTypes:
  - SecurityEvent
  connectorId: WindowsSecurityEvents
version: 1.0.6
triggerOperator: gt
OriginalUri: https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Windows Security Events/Analytic Rules/TimeSeriesAnomaly-ProcessExecutions.yaml
queryPeriod: 14d
{
  "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
  "contentVersion": "1.0.0.0",
  "parameters": {
    "workspace": {
      "type": "String"
    }
  },
  "resources": [
    {
      "apiVersion": "2024-01-01-preview",
      "id": "[concat(resourceId('Microsoft.OperationalInsights/workspaces/providers', parameters('workspace'), 'Microsoft.SecurityInsights'),'/alertRules/2c55fe7a-b06f-4029-a5b9-c54a2320d7b8')]",
      "kind": "Scheduled",
      "name": "[concat(parameters('workspace'),'/Microsoft.SecurityInsights/2c55fe7a-b06f-4029-a5b9-c54a2320d7b8')]",
      "properties": {
        "alertRuleTemplateName": "2c55fe7a-b06f-4029-a5b9-c54a2320d7b8",
        "customDetails": null,
        "description": "'This detection identifies anomalous spike in frequency of executions of sensitive processes which are often leveraged as attack vectors.\nThe query leverages KQL's built-in anomaly detection algorithms to find large deviations from baseline patterns.\nSudden increases in execution frequency of sensitive processes should be further investigated for malicious activity.\nTune the values from 1.5 to 3 in series_decompose_anomalies for further outliers or based on custom threshold values for score.'\n",
        "displayName": "Process Execution Frequency Anomaly",
        "enabled": true,
        "entityMappings": [
          {
            "entityType": "Account",
            "fieldMappings": [
              {
                "columnName": "Account",
                "identifier": "FullName"
              },
              {
                "columnName": "Name",
                "identifier": "Name"
              },
              {
                "columnName": "NTDomain",
                "identifier": "NTDomain"
              }
            ]
          },
          {
            "entityType": "Host",
            "fieldMappings": [
              {
                "columnName": "Computer",
                "identifier": "FullName"
              },
              {
                "columnName": "HostName",
                "identifier": "HostName"
              },
              {
                "columnName": "DnsDomain",
                "identifier": "DnsDomain"
              }
            ]
          }
        ],
        "OriginalUri": "https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Windows Security Events/Analytic Rules/TimeSeriesAnomaly-ProcessExecutions.yaml",
        "query": "let starttime = 14d;\nlet endtime = 1d;\nlet timeframe = 1h;\nlet TotalEventsThreshold = 5;\n// Configure the list with sensitive process names \nlet ExeList = dynamic([\"powershell.exe\",\"cmd.exe\",\"wmic.exe\",\"psexec.exe\",\"cacls.exe\",\"rundll32.exe\"]);\nlet TimeSeriesData =\nSecurityEvent\n| where EventID == 4688 | extend Process = tolower(Process)\n| where TimeGenerated between (startofday(ago(starttime))..startofday(ago(endtime)))\n| where Process in~ (ExeList)\n| project TimeGenerated, Computer, AccountType, Account, Process\n| make-series Total=count() on TimeGenerated from startofday(ago(starttime)) to startofday(ago(endtime)) step timeframe by Process;\nlet TimeSeriesAlerts = materialize(TimeSeriesData\n| extend (anomalies, score, baseline) = series_decompose_anomalies(Total, 1.5, -1, 'linefit')\n| mv-expand Total to typeof(double), TimeGenerated to typeof(datetime), anomalies to typeof(double), score to typeof(double), baseline to typeof(long)\n| where anomalies > 0\n| project Process, TimeGenerated, Total, baseline, anomalies, score\n| where Total > TotalEventsThreshold);\nlet AnomalyHours = materialize(TimeSeriesAlerts  | where TimeGenerated > ago(2d) | project TimeGenerated);\nTimeSeriesAlerts\n| where TimeGenerated > ago(2d)\n| join (\nSecurityEvent\n| where TimeGenerated between (startofday(ago(starttime))..startofday(ago(endtime)))\n| extend DateHour = bin(TimeGenerated, 1h) // create a new column and round to hour\n| where DateHour in ((AnomalyHours)) //filter the dataset to only selected anomaly hours\n| where EventID == 4688 | extend Process = tolower(Process)\n| summarize CommandlineCount = count() by bin(TimeGenerated, 1h), Process, CommandLine, Computer, Account\n) on Process, TimeGenerated\n| project AnomalyHour = TimeGenerated, Computer, Account, Process, CommandLine, CommandlineCount, Total, baseline, anomalies, score\n| extend timestamp = AnomalyHour, NTDomain = split(Account, '\\\\', 0)[0], Name = split(Account, '\\\\', 1)[0], HostName = tostring(split(Computer, '.', 0)[0]), DnsDomain = tostring(strcat_array(array_slice(split(Computer, '.'), 1, -1), '.'))\n",
        "queryFrequency": "P1D",
        "queryPeriod": "P14D",
        "severity": "Medium",
        "status": "Available",
        "subTechniques": [],
        "suppressionDuration": "PT1H",
        "suppressionEnabled": false,
        "tactics": [
          "Execution"
        ],
        "techniques": [
          "T1059"
        ],
        "templateVersion": "1.0.6",
        "triggerOperator": "GreaterThan",
        "triggerThreshold": 0
      },
      "type": "Microsoft.OperationalInsights/workspaces/providers/alertRules"
    }
  ]
}