Microsoft Sentinel Analytic Rules
cloudbrothers.infoAzure Sentinel RepoToggle Dark/Light/Auto modeToggle Dark/Light/Auto modeToggle Dark/Light/Auto modeBack to homepage

Affected rows stateful anomaly on database

Back
Id2a632013-379d-4993-956f-615063d31e10
RulenameAffected rows stateful anomaly on database
DescriptionGoal: To detect anomalous data change/deletion. This query detects SQL queries that changed/deleted a large number of rows, which is significantly higher than normal for this database.

The detection is calculated inside recent time window (defined by ‘detectionWindow’ parameter), and the anomaly is calculated based on previous training window (defined by ’trainingWindow’ parameter). The user can set the minimal threshold for anomaly by changing the threshold parameters volThresholdZ and volThresholdQ (higher threshold will detect only more severe anomalies).
SeverityMedium
TacticsImpact
TechniquesT1485
T1565
T1491
Required data connectorsAzureSql
KindScheduled
Query frequency1h
Query period14d
Trigger threshold0
Trigger operatorgt
Source Urihttps://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Azure SQL Database solution for sentinel/Analytic Rules/Detection-VolumeAffectedRowsStatefulAnomalyOnDatabase.yaml
Version1.1.2
Arm template2a632013-379d-4993-956f-615063d31e10.json
Deploy To Azure
let volumeThresholdZ = 3.0;                     // Minimal threshold for the Zscore to trigger anomaly (number of standard deviations above mean). If set higher, only very significant alerts will fire.
let volumeThresholdQ = volumeThresholdZ;        // Minimal threshold for the Qscore to trigger anomaly (number of Inter-Percentile Ranges above high percentile). If set higher, only very significant alerts will fire.
let volumeThresholdHardcoded = 500;             // Minimal value for the volume metric to trigger anomaly.
let detectionWindow = 1h;                       // The size of the recent detection window for detecting anomalies.  
let trainingWindow = detectionWindow + 14d;     // The size of the training window before the detection window for learning the normal state.
let monitoredColumn = 'AffectedRows';           // The name of the column for volumetric anomalies.
let processedData = materialize (
    AzureDiagnostics
    | where TimeGenerated >= ago(trainingWindow)
    | where Category == 'SQLSecurityAuditEvents' and action_id_s has_any ("RCM", "BCM") // Keep only SQL affected rows
    | project TimeGenerated, PrincipalName = server_principal_name_s, ClientIp = client_ip_s, HostName = host_name_s, ResourceId,
              ApplicationName = application_name_s, ActionName = action_name_s, Database = strcat(LogicalServerName_s, '/', database_name_s),
              IsSuccess = succeeded_s, AffectedRows = affected_rows_d,
              ResponseRows = response_rows_d, Statement = statement_s
    | extend QuantityColumn = column_ifexists(monitoredColumn, 0)
    | extend WindowType = case( TimeGenerated >= ago(detectionWindow), 'detection',
                                           (ago(trainingWindow) <= TimeGenerated and TimeGenerated < ago(detectionWindow)), 'training', 'other')
    | where WindowType in ('detection', 'training'));
let trainingSet =
    processedData
    | where WindowType == 'training'
    | summarize AvgVal = round(avg(QuantityColumn), 2), StdVal = round(stdev(QuantityColumn), 2), N = count(),
                P99Val = round(percentile(QuantityColumn, 99), 2), P50Val = round(percentile(QuantityColumn, 50), 2)
      by Database;
processedData
| where WindowType == 'detection'
| join kind = inner (trainingSet) on Database
| extend ZScoreVal = iff(N >= 20, round(todouble(QuantityColumn - AvgVal) / todouble(StdVal + 1), 2), 0.00),
         QScoreVal = iff(N >= 20, round(todouble(QuantityColumn - P99Val) / todouble(P99Val - P50Val + 1), 2), 0.00)
| extend IsVolumeAnomalyOnVal = iff((ZScoreVal > volumeThresholdZ and QScoreVal > volumeThresholdQ and QuantityColumn > volumeThresholdHardcoded), true, false), AnomalyScore = round((ZScoreVal + QScoreVal)/2, 0)
| project TimeGenerated, Database, PrincipalName, ClientIp, HostName, ApplicationName, ActionName, Statement,
          IsSuccess, ResponseRows, AffectedRows, IsVolumeAnomalyOnVal, AnomalyScore,ResourceId
| where IsVolumeAnomalyOnVal == 'true'
| sort by AnomalyScore desc, TimeGenerated desc
| extend Name = tostring(split(PrincipalName,'@',0)[0]), UPNSuffix = tostring(split(PrincipalName,'@',1)[0])
queryPeriod: 14d
requiredDataConnectors:
- connectorId: AzureSql
  dataTypes:
  - AzureDiagnostics
triggerThreshold: 0
OriginalUri: https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Azure SQL Database solution for sentinel/Analytic Rules/Detection-VolumeAffectedRowsStatefulAnomalyOnDatabase.yaml
tactics:
- Impact
triggerOperator: gt
severity: Medium
name: Affected rows stateful anomaly on database
relevantTechniques:
- T1485
- T1565
- T1491
query: |
  let volumeThresholdZ = 3.0;                     // Minimal threshold for the Zscore to trigger anomaly (number of standard deviations above mean). If set higher, only very significant alerts will fire.
  let volumeThresholdQ = volumeThresholdZ;        // Minimal threshold for the Qscore to trigger anomaly (number of Inter-Percentile Ranges above high percentile). If set higher, only very significant alerts will fire.
  let volumeThresholdHardcoded = 500;             // Minimal value for the volume metric to trigger anomaly.
  let detectionWindow = 1h;                       // The size of the recent detection window for detecting anomalies.  
  let trainingWindow = detectionWindow + 14d;     // The size of the training window before the detection window for learning the normal state.
  let monitoredColumn = 'AffectedRows';           // The name of the column for volumetric anomalies.
  let processedData = materialize (
      AzureDiagnostics
      | where TimeGenerated >= ago(trainingWindow)
      | where Category == 'SQLSecurityAuditEvents' and action_id_s has_any ("RCM", "BCM") // Keep only SQL affected rows
      | project TimeGenerated, PrincipalName = server_principal_name_s, ClientIp = client_ip_s, HostName = host_name_s, ResourceId,
                ApplicationName = application_name_s, ActionName = action_name_s, Database = strcat(LogicalServerName_s, '/', database_name_s),
                IsSuccess = succeeded_s, AffectedRows = affected_rows_d,
                ResponseRows = response_rows_d, Statement = statement_s
      | extend QuantityColumn = column_ifexists(monitoredColumn, 0)
      | extend WindowType = case( TimeGenerated >= ago(detectionWindow), 'detection',
                                             (ago(trainingWindow) <= TimeGenerated and TimeGenerated < ago(detectionWindow)), 'training', 'other')
      | where WindowType in ('detection', 'training'));
  let trainingSet =
      processedData
      | where WindowType == 'training'
      | summarize AvgVal = round(avg(QuantityColumn), 2), StdVal = round(stdev(QuantityColumn), 2), N = count(),
                  P99Val = round(percentile(QuantityColumn, 99), 2), P50Val = round(percentile(QuantityColumn, 50), 2)
        by Database;
  processedData
  | where WindowType == 'detection'
  | join kind = inner (trainingSet) on Database
  | extend ZScoreVal = iff(N >= 20, round(todouble(QuantityColumn - AvgVal) / todouble(StdVal + 1), 2), 0.00),
           QScoreVal = iff(N >= 20, round(todouble(QuantityColumn - P99Val) / todouble(P99Val - P50Val + 1), 2), 0.00)
  | extend IsVolumeAnomalyOnVal = iff((ZScoreVal > volumeThresholdZ and QScoreVal > volumeThresholdQ and QuantityColumn > volumeThresholdHardcoded), true, false), AnomalyScore = round((ZScoreVal + QScoreVal)/2, 0)
  | project TimeGenerated, Database, PrincipalName, ClientIp, HostName, ApplicationName, ActionName, Statement,
            IsSuccess, ResponseRows, AffectedRows, IsVolumeAnomalyOnVal, AnomalyScore,ResourceId
  | where IsVolumeAnomalyOnVal == 'true'
  | sort by AnomalyScore desc, TimeGenerated desc
  | extend Name = tostring(split(PrincipalName,'@',0)[0]), UPNSuffix = tostring(split(PrincipalName,'@',1)[0])  
queryFrequency: 1h
id: 2a632013-379d-4993-956f-615063d31e10
status: Available
kind: Scheduled
entityMappings:
- fieldMappings:
  - columnName: Name
    identifier: Name
  - columnName: UPNSuffix
    identifier: UPNSuffix
  entityType: Account
- fieldMappings:
  - columnName: ClientIp
    identifier: Address
  entityType: IP
- fieldMappings:
  - columnName: HostName
    identifier: HostName
  entityType: Host
- fieldMappings:
  - columnName: ApplicationName
    identifier: Name
  entityType: CloudApplication
- fieldMappings:
  - columnName: ResourceId
    identifier: ResourceId
  entityType: AzureResource
version: 1.1.2
tags:
- SQL
description: |
  'Goal: To detect anomalous data change/deletion. This query detects SQL queries that changed/deleted a large number of rows, which is significantly higher than normal for this database.
  The detection is calculated inside recent time window (defined by 'detectionWindow' parameter), and the anomaly is calculated based on previous training window (defined by 'trainingWindow' parameter). The user can set the minimal threshold for anomaly by changing the threshold parameters volThresholdZ and volThresholdQ (higher threshold will detect only more severe anomalies).'  
{
  "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
  "contentVersion": "1.0.0.0",
  "parameters": {
    "workspace": {
      "type": "String"
    }
  },
  "resources": [
    {
      "apiVersion": "2024-01-01-preview",
      "id": "[concat(resourceId('Microsoft.OperationalInsights/workspaces/providers', parameters('workspace'), 'Microsoft.SecurityInsights'),'/alertRules/2a632013-379d-4993-956f-615063d31e10')]",
      "kind": "Scheduled",
      "name": "[concat(parameters('workspace'),'/Microsoft.SecurityInsights/2a632013-379d-4993-956f-615063d31e10')]",
      "properties": {
        "alertRuleTemplateName": "2a632013-379d-4993-956f-615063d31e10",
        "customDetails": null,
        "description": "'Goal: To detect anomalous data change/deletion. This query detects SQL queries that changed/deleted a large number of rows, which is significantly higher than normal for this database.\nThe detection is calculated inside recent time window (defined by 'detectionWindow' parameter), and the anomaly is calculated based on previous training window (defined by 'trainingWindow' parameter). The user can set the minimal threshold for anomaly by changing the threshold parameters volThresholdZ and volThresholdQ (higher threshold will detect only more severe anomalies).'\n",
        "displayName": "Affected rows stateful anomaly on database",
        "enabled": true,
        "entityMappings": [
          {
            "entityType": "Account",
            "fieldMappings": [
              {
                "columnName": "Name",
                "identifier": "Name"
              },
              {
                "columnName": "UPNSuffix",
                "identifier": "UPNSuffix"
              }
            ]
          },
          {
            "entityType": "IP",
            "fieldMappings": [
              {
                "columnName": "ClientIp",
                "identifier": "Address"
              }
            ]
          },
          {
            "entityType": "Host",
            "fieldMappings": [
              {
                "columnName": "HostName",
                "identifier": "HostName"
              }
            ]
          },
          {
            "entityType": "CloudApplication",
            "fieldMappings": [
              {
                "columnName": "ApplicationName",
                "identifier": "Name"
              }
            ]
          },
          {
            "entityType": "AzureResource",
            "fieldMappings": [
              {
                "columnName": "ResourceId",
                "identifier": "ResourceId"
              }
            ]
          }
        ],
        "OriginalUri": "https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Azure SQL Database solution for sentinel/Analytic Rules/Detection-VolumeAffectedRowsStatefulAnomalyOnDatabase.yaml",
        "query": "let volumeThresholdZ = 3.0;                     // Minimal threshold for the Zscore to trigger anomaly (number of standard deviations above mean). If set higher, only very significant alerts will fire.\nlet volumeThresholdQ = volumeThresholdZ;        // Minimal threshold for the Qscore to trigger anomaly (number of Inter-Percentile Ranges above high percentile). If set higher, only very significant alerts will fire.\nlet volumeThresholdHardcoded = 500;             // Minimal value for the volume metric to trigger anomaly.\nlet detectionWindow = 1h;                       // The size of the recent detection window for detecting anomalies.  \nlet trainingWindow = detectionWindow + 14d;     // The size of the training window before the detection window for learning the normal state.\nlet monitoredColumn = 'AffectedRows';           // The name of the column for volumetric anomalies.\nlet processedData = materialize (\n    AzureDiagnostics\n    | where TimeGenerated >= ago(trainingWindow)\n    | where Category == 'SQLSecurityAuditEvents' and action_id_s has_any (\"RCM\", \"BCM\") // Keep only SQL affected rows\n    | project TimeGenerated, PrincipalName = server_principal_name_s, ClientIp = client_ip_s, HostName = host_name_s, ResourceId,\n              ApplicationName = application_name_s, ActionName = action_name_s, Database = strcat(LogicalServerName_s, '/', database_name_s),\n              IsSuccess = succeeded_s, AffectedRows = affected_rows_d,\n              ResponseRows = response_rows_d, Statement = statement_s\n    | extend QuantityColumn = column_ifexists(monitoredColumn, 0)\n    | extend WindowType = case( TimeGenerated >= ago(detectionWindow), 'detection',\n                                           (ago(trainingWindow) <= TimeGenerated and TimeGenerated < ago(detectionWindow)), 'training', 'other')\n    | where WindowType in ('detection', 'training'));\nlet trainingSet =\n    processedData\n    | where WindowType == 'training'\n    | summarize AvgVal = round(avg(QuantityColumn), 2), StdVal = round(stdev(QuantityColumn), 2), N = count(),\n                P99Val = round(percentile(QuantityColumn, 99), 2), P50Val = round(percentile(QuantityColumn, 50), 2)\n      by Database;\nprocessedData\n| where WindowType == 'detection'\n| join kind = inner (trainingSet) on Database\n| extend ZScoreVal = iff(N >= 20, round(todouble(QuantityColumn - AvgVal) / todouble(StdVal + 1), 2), 0.00),\n         QScoreVal = iff(N >= 20, round(todouble(QuantityColumn - P99Val) / todouble(P99Val - P50Val + 1), 2), 0.00)\n| extend IsVolumeAnomalyOnVal = iff((ZScoreVal > volumeThresholdZ and QScoreVal > volumeThresholdQ and QuantityColumn > volumeThresholdHardcoded), true, false), AnomalyScore = round((ZScoreVal + QScoreVal)/2, 0)\n| project TimeGenerated, Database, PrincipalName, ClientIp, HostName, ApplicationName, ActionName, Statement,\n          IsSuccess, ResponseRows, AffectedRows, IsVolumeAnomalyOnVal, AnomalyScore,ResourceId\n| where IsVolumeAnomalyOnVal == 'true'\n| sort by AnomalyScore desc, TimeGenerated desc\n| extend Name = tostring(split(PrincipalName,'@',0)[0]), UPNSuffix = tostring(split(PrincipalName,'@',1)[0])\n",
        "queryFrequency": "PT1H",
        "queryPeriod": "P14D",
        "severity": "Medium",
        "status": "Available",
        "subTechniques": [],
        "suppressionDuration": "PT1H",
        "suppressionEnabled": false,
        "tactics": [
          "Impact"
        ],
        "tags": [
          "SQL"
        ],
        "techniques": [
          "T1485",
          "T1491",
          "T1565"
        ],
        "templateVersion": "1.1.2",
        "triggerOperator": "GreaterThan",
        "triggerThreshold": 0
      },
      "type": "Microsoft.OperationalInsights/workspaces/providers/alertRules"
    }
  ]
}