Microsoft Sentinel Analytic Rules
cloudbrothers.infoAzure Sentinel RepoToggle Dark/Light/Auto modeToggle Dark/Light/Auto modeToggle Dark/Light/Auto modeBack to homepage

Rare client observed with high reverse DNS lookup count - Anomaly based ASIM DNS Solution

Back
Id0fe6bde4-b215-480c-99b4-84a96edcdbd7
RulenameRare client observed with high reverse DNS lookup count - Anomaly based (ASIM DNS Solution)
DescriptionThis rule makes use of the series decompose anomaly method to identify clients with high reverse DNS counts. This helps in detecting the possible initial phases of an attack, like discovery and reconnaissance. It utilizes ASIM normalization and is applied to any source that supports the ASIM DNS schema.
SeverityMedium
TacticsReconnaissance
TechniquesT1590
KindScheduled
Query frequency1d
Query period14d
Trigger threshold0
Trigger operatorgt
Source Urihttps://github.com/Azure/Azure-Sentinel/blob/master/Solutions/DNS Essentials/Analytic Rules/RareClientObservedWithHighReverseDNSLookupCountAnomalyBased.yaml
Version1.0.2
Arm template0fe6bde4-b215-480c-99b4-84a96edcdbd7.json
Deploy To Azure
let threshold = 2.5;
let SearchDomain = dynamic(["in-addr.arpa"]);
let min_t = ago(14d);
let max_t = now();
let timeframe = 1d;
let DNSEvents=(stime: datetime, etime: datetime) {
  _Im_Dns(starttime=stime, endtime=etime, domain_has_any=SearchDomain)
};
DNSEvents(stime=min_t, etime=max_t)
| make-series QueryCount=dcount(DnsQuery) on TimeGenerated from min_t to max_t step timeframe by SrcIpAddr
| extend (anomalies, score, baseline) = series_decompose_anomalies(QueryCount, threshold, -1, 'linefit')
| mv-expand anomalies, score, baseline, TimeGenerated, QueryCount
| extend
  anomalies = toint(anomalies),
  score = toint(score),
  baseline = toint(baseline),
  EventTime = todatetime(TimeGenerated),
  Total = tolong(QueryCount)
| where EventTime >= ago(timeframe)
| where score >= threshold * 2
| join kind = inner (DNSEvents(stime=ago(timeframe), etime=max_t)
  | summarize DNSQueries=make_set(DnsQuery, 1000) by SrcIpAddr)
  on SrcIpAddr
| project-away SrcIpAddr1
relevantTechniques:
- T1590
name: Rare client observed with high reverse DNS lookup count - Anomaly based (ASIM DNS Solution)
requiredDataConnectors: []
entityMappings:
- fieldMappings:
  - identifier: Address
    columnName: SrcIpAddr
  entityType: IP
triggerThreshold: 0
id: 0fe6bde4-b215-480c-99b4-84a96edcdbd7
tactics:
- Reconnaissance
version: 1.0.2
customDetails:
  baseline: baseline
  DNSQueries: DNSQueries
  Total: Total
  AnomalyScore: score
queryPeriod: 14d
alertDetailsOverride:
  alertDisplayNameFormat: "[Anomaly] Rare client has been observed as making high reverse DNS lookup count  - client IP: '{{SrcIpAddr}}'"
  alertDescriptionFormat: |-
    Client has been identified as making high reverse DNS counts which could be carrying out reconnaissance or discovery activity.

    Reverse DNS lookup count baseline for this client: '{{baseline}}'

    Current reverse DNS lookup count by this client showing as: '{{Total}}'

    DNS queries requested by this client inlcude: '{{DNSQueries}}'    
triggerOperator: gt
kind: Scheduled
tags:
- Schema: ASimDns
  SchemaVersion: 0.1.6
eventGroupingSettings:
  aggregationKind: AlertPerResult
OriginalUri: https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/DNS Essentials/Analytic Rules/RareClientObservedWithHighReverseDNSLookupCountAnomalyBased.yaml
queryFrequency: 1d
severity: Medium
status: Available
description: |
    'This rule makes use of the series decompose anomaly method to identify clients with high reverse DNS counts. This helps in detecting the possible initial phases of an attack, like discovery and reconnaissance. It utilizes [ASIM](https://aka.ms/AboutASIM) normalization and is applied to any source that supports the ASIM DNS schema.'
query: |
  let threshold = 2.5;
  let SearchDomain = dynamic(["in-addr.arpa"]);
  let min_t = ago(14d);
  let max_t = now();
  let timeframe = 1d;
  let DNSEvents=(stime: datetime, etime: datetime) {
    _Im_Dns(starttime=stime, endtime=etime, domain_has_any=SearchDomain)
  };
  DNSEvents(stime=min_t, etime=max_t)
  | make-series QueryCount=dcount(DnsQuery) on TimeGenerated from min_t to max_t step timeframe by SrcIpAddr
  | extend (anomalies, score, baseline) = series_decompose_anomalies(QueryCount, threshold, -1, 'linefit')
  | mv-expand anomalies, score, baseline, TimeGenerated, QueryCount
  | extend
    anomalies = toint(anomalies),
    score = toint(score),
    baseline = toint(baseline),
    EventTime = todatetime(TimeGenerated),
    Total = tolong(QueryCount)
  | where EventTime >= ago(timeframe)
  | where score >= threshold * 2
  | join kind = inner (DNSEvents(stime=ago(timeframe), etime=max_t)
    | summarize DNSQueries=make_set(DnsQuery, 1000) by SrcIpAddr)
    on SrcIpAddr
  | project-away SrcIpAddr1  
{
  "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
  "contentVersion": "1.0.0.0",
  "parameters": {
    "workspace": {
      "type": "String"
    }
  },
  "resources": [
    {
      "apiVersion": "2024-01-01-preview",
      "id": "[concat(resourceId('Microsoft.OperationalInsights/workspaces/providers', parameters('workspace'), 'Microsoft.SecurityInsights'),'/alertRules/0fe6bde4-b215-480c-99b4-84a96edcdbd7')]",
      "kind": "Scheduled",
      "name": "[concat(parameters('workspace'),'/Microsoft.SecurityInsights/0fe6bde4-b215-480c-99b4-84a96edcdbd7')]",
      "properties": {
        "alertDetailsOverride": {
          "alertDescriptionFormat": "Client has been identified as making high reverse DNS counts which could be carrying out reconnaissance or discovery activity.\n\nReverse DNS lookup count baseline for this client: '{{baseline}}'\n\nCurrent reverse DNS lookup count by this client showing as: '{{Total}}'\n\nDNS queries requested by this client inlcude: '{{DNSQueries}}'",
          "alertDisplayNameFormat": "[Anomaly] Rare client has been observed as making high reverse DNS lookup count  - client IP: '{{SrcIpAddr}}'"
        },
        "alertRuleTemplateName": "0fe6bde4-b215-480c-99b4-84a96edcdbd7",
        "customDetails": {
          "AnomalyScore": "score",
          "baseline": "baseline",
          "DNSQueries": "DNSQueries",
          "Total": "Total"
        },
        "description": "'This rule makes use of the series decompose anomaly method to identify clients with high reverse DNS counts. This helps in detecting the possible initial phases of an attack, like discovery and reconnaissance. It utilizes [ASIM](https://aka.ms/AboutASIM) normalization and is applied to any source that supports the ASIM DNS schema.'\n",
        "displayName": "Rare client observed with high reverse DNS lookup count - Anomaly based (ASIM DNS Solution)",
        "enabled": true,
        "entityMappings": [
          {
            "entityType": "IP",
            "fieldMappings": [
              {
                "columnName": "SrcIpAddr",
                "identifier": "Address"
              }
            ]
          }
        ],
        "eventGroupingSettings": {
          "aggregationKind": "AlertPerResult"
        },
        "OriginalUri": "https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/DNS Essentials/Analytic Rules/RareClientObservedWithHighReverseDNSLookupCountAnomalyBased.yaml",
        "query": "let threshold = 2.5;\nlet SearchDomain = dynamic([\"in-addr.arpa\"]);\nlet min_t = ago(14d);\nlet max_t = now();\nlet timeframe = 1d;\nlet DNSEvents=(stime: datetime, etime: datetime) {\n  _Im_Dns(starttime=stime, endtime=etime, domain_has_any=SearchDomain)\n};\nDNSEvents(stime=min_t, etime=max_t)\n| make-series QueryCount=dcount(DnsQuery) on TimeGenerated from min_t to max_t step timeframe by SrcIpAddr\n| extend (anomalies, score, baseline) = series_decompose_anomalies(QueryCount, threshold, -1, 'linefit')\n| mv-expand anomalies, score, baseline, TimeGenerated, QueryCount\n| extend\n  anomalies = toint(anomalies),\n  score = toint(score),\n  baseline = toint(baseline),\n  EventTime = todatetime(TimeGenerated),\n  Total = tolong(QueryCount)\n| where EventTime >= ago(timeframe)\n| where score >= threshold * 2\n| join kind = inner (DNSEvents(stime=ago(timeframe), etime=max_t)\n  | summarize DNSQueries=make_set(DnsQuery, 1000) by SrcIpAddr)\n  on SrcIpAddr\n| project-away SrcIpAddr1\n",
        "queryFrequency": "P1D",
        "queryPeriod": "P14D",
        "severity": "Medium",
        "status": "Available",
        "subTechniques": [],
        "suppressionDuration": "PT1H",
        "suppressionEnabled": false,
        "tactics": [
          "Reconnaissance"
        ],
        "tags": [
          {
            "Schema": "ASimDns",
            "SchemaVersion": "0.1.6"
          }
        ],
        "techniques": [
          "T1590"
        ],
        "templateVersion": "1.0.2",
        "triggerOperator": "GreaterThan",
        "triggerThreshold": 0
      },
      "type": "Microsoft.OperationalInsights/workspaces/providers/alertRules"
    }
  ]
}