Azure Key Vault access TimeSeries anomaly
Id | 0914adab-90b5-47a3-a79f-7cdcac843aa7 |
Rulename | Azure Key Vault access TimeSeries anomaly |
Description | Identifies a sudden increase in count of Azure Key Vault secret or vault access operations by CallerIPAddress. The query leverages a built-in KQL anomaly detection algorithm to find large deviations from baseline Azure Key Vault access patterns. Any sudden increase in the count of Azure Key Vault accesses can be an indication of adversary dumping credentials via automated methods. If you are seeing any noise, try filtering known source(IP/Account) and user-agent combinations. TimeSeries Reference Blog: https://techcommunity.microsoft.com/t5/azure-sentinel/looking-for-unknown-anomalies-what-is-normal-time-series/ba-p/555052 |
Severity | Low |
Tactics | CredentialAccess |
Techniques | T1003 |
Required data connectors | AzureKeyVault |
Kind | Scheduled |
Query frequency | 1d |
Query period | 14d |
Trigger threshold | 0 |
Trigger operator | gt |
Source Uri | https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Azure Key Vault/Analytic Rules/TimeSeriesKeyvaultAccessAnomaly.yaml |
Version | 1.0.6 |
Arm template | 0914adab-90b5-47a3-a79f-7cdcac843aa7.json |
let starttime = 14d;
let timeframe = 1d;
let scorethreshold = 3;
let baselinethreshold = 25;
// To avoid any False Positives, filtering using AppId is recommended. For example the AppId 509e4652-da8d-478d-a730-e9d4a1996ca4 has been added in the query as it corresponds
// to Azure Resource Graph performing VaultGet operations for indexing and syncing all tracked resources across Azure.
let Allowedappid = dynamic(["509e4652-da8d-478d-a730-e9d4a1996ca4"]);
let OperationList = dynamic(
["SecretGet", "KeyGet", "VaultGet"]);
let TimeSeriesData = AzureDiagnostics
| where TimeGenerated between (startofday(ago(starttime))..startofday(now()))
| where not((identity_claim_appid_g in (Allowedappid)) and OperationName == 'VaultGet')
| where ResourceType =~ "VAULTS" and ResultType =~ "Success"
| where OperationName in (OperationList)
| extend ResultType = column_ifexists("ResultType", "None"), CallerIPAddress = column_ifexists("CallerIPAddress", "None")
| where ResultType !~ "None" and isnotempty(ResultType)
| where CallerIPAddress !~ "None" and isnotempty(CallerIPAddress)
| project TimeGenerated, OperationName, Resource, CallerIPAddress
| make-series HourlyCount=count() on TimeGenerated from startofday(ago(starttime)) to startofday(now()) step timeframe by CallerIPAddress;
//Filter anomolies against TimeSeriesData
let TimeSeriesAlerts = TimeSeriesData
| extend (anomalies, score, baseline) = series_decompose_anomalies(HourlyCount, scorethreshold, -1, 'linefit')
| mv-expand HourlyCount to typeof(double), TimeGenerated to typeof(datetime), anomalies to typeof(double),score to typeof(double), baseline to typeof(long)
| where anomalies > 0 | extend AnomalyHour = TimeGenerated
| where baseline > baselinethreshold // Filtering low count events per baselinethreshold
| project CallerIPAddress, AnomalyHour, TimeGenerated, HourlyCount, baseline, anomalies, score;
let AnomalyHours = TimeSeriesAlerts | where TimeGenerated > ago(2d) | project TimeGenerated;
// Filter the alerts since specified timeframe
TimeSeriesAlerts
| where TimeGenerated > ago(2d)
// Join against base logs since specified timeframe to retrive records associated with the hour of anomoly
| join kind = innerunique (
AzureDiagnostics
| where TimeGenerated > ago(2d)
| where not((identity_claim_appid_g in (Allowedappid)) and OperationName == 'VaultGet')
| where ResourceType =~ "VAULTS" and ResultType =~ "Success"
| where OperationName in (OperationList)
| extend DateHour = bin(TimeGenerated, 1h) // create a new column and round to hour
| where DateHour in ((AnomalyHours)) //filter the dataset to only selected anomaly hours
| extend ResultType = column_ifexists("ResultType", "NoResultType")
| extend requestUri_s = column_ifexists("requestUri_s", "None"), identity_claim_http_schemas_microsoft_com_identity_claims_objectidentifier_g = column_ifexists("identity_claim_http_schemas_microsoft_com_identity_claims_objectidentifier_g", "None"),identity_claim_oid_g = column_ifexists("identity_claim_oid_g", ""),
identity_claim_upn_s = column_ifexists("identity_claim_upn_s", "")
| extend
CallerObjectId = iff(isempty(identity_claim_oid_g), identity_claim_http_schemas_microsoft_com_identity_claims_objectidentifier_g, identity_claim_oid_g),
CallerObjectUPN = iff(isempty(identity_claim_upn_s), identity_claim_http_schemas_xmlsoap_org_ws_2005_05_identity_claims_upn_s, identity_claim_upn_s)
| extend id_s = column_ifexists("id_s", "None"), CallerIPAddress = column_ifexists("CallerIPAddress", "None"), clientInfo_s = column_ifexists("clientInfo_s", "None")
| summarize PerOperationCount=count(), LatestAnomalyTime = arg_max(TimeGenerated,*) by bin(TimeGenerated,1h), Resource, OperationName, id_s, CallerIPAddress, identity_claim_http_schemas_microsoft_com_identity_claims_objectidentifier_g, identity_claim_oid_g, requestUri_s, clientInfo_s
) on CallerIPAddress
| extend
CallerObjectId = iff(isempty(identity_claim_oid_g), identity_claim_http_schemas_microsoft_com_identity_claims_objectidentifier_g, identity_claim_oid_g),
CallerObjectUPN = iff(isempty(identity_claim_upn_s), identity_claim_http_schemas_xmlsoap_org_ws_2005_05_identity_claims_upn_s, identity_claim_upn_s)
| summarize EventCount=count(), OperationNameList = make_set(OperationName,1000), RequestURLList = make_set(requestUri_s, 100), AccountList = make_set(CallerObjectId, 100), AccountMax = arg_max(CallerObjectId,*) by Resource, id_s, clientInfo_s, LatestAnomalyTime
| extend timestamp = LatestAnomalyTime
queryPeriod: 14d
requiredDataConnectors:
- connectorId: AzureKeyVault
dataTypes:
- KeyVaultData
triggerThreshold: 0
OriginalUri: https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Azure Key Vault/Analytic Rules/TimeSeriesKeyvaultAccessAnomaly.yaml
tactics:
- CredentialAccess
triggerOperator: gt
severity: Low
name: Azure Key Vault access TimeSeries anomaly
relevantTechniques:
- T1003
query: |
let starttime = 14d;
let timeframe = 1d;
let scorethreshold = 3;
let baselinethreshold = 25;
// To avoid any False Positives, filtering using AppId is recommended. For example the AppId 509e4652-da8d-478d-a730-e9d4a1996ca4 has been added in the query as it corresponds
// to Azure Resource Graph performing VaultGet operations for indexing and syncing all tracked resources across Azure.
let Allowedappid = dynamic(["509e4652-da8d-478d-a730-e9d4a1996ca4"]);
let OperationList = dynamic(
["SecretGet", "KeyGet", "VaultGet"]);
let TimeSeriesData = AzureDiagnostics
| where TimeGenerated between (startofday(ago(starttime))..startofday(now()))
| where not((identity_claim_appid_g in (Allowedappid)) and OperationName == 'VaultGet')
| where ResourceType =~ "VAULTS" and ResultType =~ "Success"
| where OperationName in (OperationList)
| extend ResultType = column_ifexists("ResultType", "None"), CallerIPAddress = column_ifexists("CallerIPAddress", "None")
| where ResultType !~ "None" and isnotempty(ResultType)
| where CallerIPAddress !~ "None" and isnotempty(CallerIPAddress)
| project TimeGenerated, OperationName, Resource, CallerIPAddress
| make-series HourlyCount=count() on TimeGenerated from startofday(ago(starttime)) to startofday(now()) step timeframe by CallerIPAddress;
//Filter anomolies against TimeSeriesData
let TimeSeriesAlerts = TimeSeriesData
| extend (anomalies, score, baseline) = series_decompose_anomalies(HourlyCount, scorethreshold, -1, 'linefit')
| mv-expand HourlyCount to typeof(double), TimeGenerated to typeof(datetime), anomalies to typeof(double),score to typeof(double), baseline to typeof(long)
| where anomalies > 0 | extend AnomalyHour = TimeGenerated
| where baseline > baselinethreshold // Filtering low count events per baselinethreshold
| project CallerIPAddress, AnomalyHour, TimeGenerated, HourlyCount, baseline, anomalies, score;
let AnomalyHours = TimeSeriesAlerts | where TimeGenerated > ago(2d) | project TimeGenerated;
// Filter the alerts since specified timeframe
TimeSeriesAlerts
| where TimeGenerated > ago(2d)
// Join against base logs since specified timeframe to retrive records associated with the hour of anomoly
| join kind = innerunique (
AzureDiagnostics
| where TimeGenerated > ago(2d)
| where not((identity_claim_appid_g in (Allowedappid)) and OperationName == 'VaultGet')
| where ResourceType =~ "VAULTS" and ResultType =~ "Success"
| where OperationName in (OperationList)
| extend DateHour = bin(TimeGenerated, 1h) // create a new column and round to hour
| where DateHour in ((AnomalyHours)) //filter the dataset to only selected anomaly hours
| extend ResultType = column_ifexists("ResultType", "NoResultType")
| extend requestUri_s = column_ifexists("requestUri_s", "None"), identity_claim_http_schemas_microsoft_com_identity_claims_objectidentifier_g = column_ifexists("identity_claim_http_schemas_microsoft_com_identity_claims_objectidentifier_g", "None"),identity_claim_oid_g = column_ifexists("identity_claim_oid_g", ""),
identity_claim_upn_s = column_ifexists("identity_claim_upn_s", "")
| extend
CallerObjectId = iff(isempty(identity_claim_oid_g), identity_claim_http_schemas_microsoft_com_identity_claims_objectidentifier_g, identity_claim_oid_g),
CallerObjectUPN = iff(isempty(identity_claim_upn_s), identity_claim_http_schemas_xmlsoap_org_ws_2005_05_identity_claims_upn_s, identity_claim_upn_s)
| extend id_s = column_ifexists("id_s", "None"), CallerIPAddress = column_ifexists("CallerIPAddress", "None"), clientInfo_s = column_ifexists("clientInfo_s", "None")
| summarize PerOperationCount=count(), LatestAnomalyTime = arg_max(TimeGenerated,*) by bin(TimeGenerated,1h), Resource, OperationName, id_s, CallerIPAddress, identity_claim_http_schemas_microsoft_com_identity_claims_objectidentifier_g, identity_claim_oid_g, requestUri_s, clientInfo_s
) on CallerIPAddress
| extend
CallerObjectId = iff(isempty(identity_claim_oid_g), identity_claim_http_schemas_microsoft_com_identity_claims_objectidentifier_g, identity_claim_oid_g),
CallerObjectUPN = iff(isempty(identity_claim_upn_s), identity_claim_http_schemas_xmlsoap_org_ws_2005_05_identity_claims_upn_s, identity_claim_upn_s)
| summarize EventCount=count(), OperationNameList = make_set(OperationName,1000), RequestURLList = make_set(requestUri_s, 100), AccountList = make_set(CallerObjectId, 100), AccountMax = arg_max(CallerObjectId,*) by Resource, id_s, clientInfo_s, LatestAnomalyTime
| extend timestamp = LatestAnomalyTime
queryFrequency: 1d
id: 0914adab-90b5-47a3-a79f-7cdcac843aa7
status: Available
kind: Scheduled
entityMappings:
- fieldMappings:
- columnName: AccountMax
identifier: Name
entityType: Account
- fieldMappings:
- columnName: CallerIPAddress
identifier: Address
entityType: IP
version: 1.0.6
description: |
'Identifies a sudden increase in count of Azure Key Vault secret or vault access operations by CallerIPAddress. The query leverages a built-in KQL anomaly detection algorithm to find large deviations from baseline Azure Key Vault access patterns.
Any sudden increase in the count of Azure Key Vault accesses can be an indication of adversary dumping credentials via automated methods. If you are seeing any noise, try filtering known source(IP/Account) and user-agent combinations.
TimeSeries Reference Blog: https://techcommunity.microsoft.com/t5/azure-sentinel/looking-for-unknown-anomalies-what-is-normal-time-series/ba-p/555052'
{
"$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {
"workspace": {
"type": "String"
}
},
"resources": [
{
"apiVersion": "2024-01-01-preview",
"id": "[concat(resourceId('Microsoft.OperationalInsights/workspaces/providers', parameters('workspace'), 'Microsoft.SecurityInsights'),'/alertRules/0914adab-90b5-47a3-a79f-7cdcac843aa7')]",
"kind": "Scheduled",
"name": "[concat(parameters('workspace'),'/Microsoft.SecurityInsights/0914adab-90b5-47a3-a79f-7cdcac843aa7')]",
"properties": {
"alertRuleTemplateName": "0914adab-90b5-47a3-a79f-7cdcac843aa7",
"customDetails": null,
"description": "'Identifies a sudden increase in count of Azure Key Vault secret or vault access operations by CallerIPAddress. The query leverages a built-in KQL anomaly detection algorithm to find large deviations from baseline Azure Key Vault access patterns.\nAny sudden increase in the count of Azure Key Vault accesses can be an indication of adversary dumping credentials via automated methods. If you are seeing any noise, try filtering known source(IP/Account) and user-agent combinations.\nTimeSeries Reference Blog: https://techcommunity.microsoft.com/t5/azure-sentinel/looking-for-unknown-anomalies-what-is-normal-time-series/ba-p/555052'\n",
"displayName": "Azure Key Vault access TimeSeries anomaly",
"enabled": true,
"entityMappings": [
{
"entityType": "Account",
"fieldMappings": [
{
"columnName": "AccountMax",
"identifier": "Name"
}
]
},
{
"entityType": "IP",
"fieldMappings": [
{
"columnName": "CallerIPAddress",
"identifier": "Address"
}
]
}
],
"OriginalUri": "https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Azure Key Vault/Analytic Rules/TimeSeriesKeyvaultAccessAnomaly.yaml",
"query": "let starttime = 14d;\nlet timeframe = 1d;\nlet scorethreshold = 3;\nlet baselinethreshold = 25;\n// To avoid any False Positives, filtering using AppId is recommended. For example the AppId 509e4652-da8d-478d-a730-e9d4a1996ca4 has been added in the query as it corresponds\n// to Azure Resource Graph performing VaultGet operations for indexing and syncing all tracked resources across Azure.\nlet Allowedappid = dynamic([\"509e4652-da8d-478d-a730-e9d4a1996ca4\"]);\nlet OperationList = dynamic(\n[\"SecretGet\", \"KeyGet\", \"VaultGet\"]);\nlet TimeSeriesData = AzureDiagnostics\n| where TimeGenerated between (startofday(ago(starttime))..startofday(now()))\n| where not((identity_claim_appid_g in (Allowedappid)) and OperationName == 'VaultGet')\n | where ResourceType =~ \"VAULTS\" and ResultType =~ \"Success\"\n| where OperationName in (OperationList)\n| extend ResultType = column_ifexists(\"ResultType\", \"None\"), CallerIPAddress = column_ifexists(\"CallerIPAddress\", \"None\")\n| where ResultType !~ \"None\" and isnotempty(ResultType)\n| where CallerIPAddress !~ \"None\" and isnotempty(CallerIPAddress)\n| project TimeGenerated, OperationName, Resource, CallerIPAddress\n| make-series HourlyCount=count() on TimeGenerated from startofday(ago(starttime)) to startofday(now()) step timeframe by CallerIPAddress;\n//Filter anomolies against TimeSeriesData\nlet TimeSeriesAlerts = TimeSeriesData\n| extend (anomalies, score, baseline) = series_decompose_anomalies(HourlyCount, scorethreshold, -1, 'linefit')\n| mv-expand HourlyCount to typeof(double), TimeGenerated to typeof(datetime), anomalies to typeof(double),score to typeof(double), baseline to typeof(long)\n| where anomalies > 0 | extend AnomalyHour = TimeGenerated\n| where baseline > baselinethreshold // Filtering low count events per baselinethreshold\n| project CallerIPAddress, AnomalyHour, TimeGenerated, HourlyCount, baseline, anomalies, score;\nlet AnomalyHours = TimeSeriesAlerts | where TimeGenerated > ago(2d) | project TimeGenerated;\n// Filter the alerts since specified timeframe\nTimeSeriesAlerts\n| where TimeGenerated > ago(2d)\n// Join against base logs since specified timeframe to retrive records associated with the hour of anomoly\n| join kind = innerunique (\nAzureDiagnostics\n| where TimeGenerated > ago(2d)\n| where not((identity_claim_appid_g in (Allowedappid)) and OperationName == 'VaultGet')\n| where ResourceType =~ \"VAULTS\" and ResultType =~ \"Success\"\n| where OperationName in (OperationList)\n| extend DateHour = bin(TimeGenerated, 1h) // create a new column and round to hour\n| where DateHour in ((AnomalyHours)) //filter the dataset to only selected anomaly hours\n| extend ResultType = column_ifexists(\"ResultType\", \"NoResultType\")\n| extend requestUri_s = column_ifexists(\"requestUri_s\", \"None\"), identity_claim_http_schemas_microsoft_com_identity_claims_objectidentifier_g = column_ifexists(\"identity_claim_http_schemas_microsoft_com_identity_claims_objectidentifier_g\", \"None\"),identity_claim_oid_g = column_ifexists(\"identity_claim_oid_g\", \"\"),\n identity_claim_upn_s = column_ifexists(\"identity_claim_upn_s\", \"\")\n| extend\n CallerObjectId = iff(isempty(identity_claim_oid_g), identity_claim_http_schemas_microsoft_com_identity_claims_objectidentifier_g, identity_claim_oid_g),\n CallerObjectUPN = iff(isempty(identity_claim_upn_s), identity_claim_http_schemas_xmlsoap_org_ws_2005_05_identity_claims_upn_s, identity_claim_upn_s)\n| extend id_s = column_ifexists(\"id_s\", \"None\"), CallerIPAddress = column_ifexists(\"CallerIPAddress\", \"None\"), clientInfo_s = column_ifexists(\"clientInfo_s\", \"None\")\n| summarize PerOperationCount=count(), LatestAnomalyTime = arg_max(TimeGenerated,*) by bin(TimeGenerated,1h), Resource, OperationName, id_s, CallerIPAddress, identity_claim_http_schemas_microsoft_com_identity_claims_objectidentifier_g, identity_claim_oid_g, requestUri_s, clientInfo_s\n) on CallerIPAddress\n| extend\n CallerObjectId = iff(isempty(identity_claim_oid_g), identity_claim_http_schemas_microsoft_com_identity_claims_objectidentifier_g, identity_claim_oid_g),\n CallerObjectUPN = iff(isempty(identity_claim_upn_s), identity_claim_http_schemas_xmlsoap_org_ws_2005_05_identity_claims_upn_s, identity_claim_upn_s)\n| summarize EventCount=count(), OperationNameList = make_set(OperationName,1000), RequestURLList = make_set(requestUri_s, 100), AccountList = make_set(CallerObjectId, 100), AccountMax = arg_max(CallerObjectId,*) by Resource, id_s, clientInfo_s, LatestAnomalyTime\n| extend timestamp = LatestAnomalyTime\n",
"queryFrequency": "P1D",
"queryPeriod": "P14D",
"severity": "Low",
"status": "Available",
"subTechniques": [],
"suppressionDuration": "PT1H",
"suppressionEnabled": false,
"tactics": [
"CredentialAccess"
],
"techniques": [
"T1003"
],
"templateVersion": "1.0.6",
"triggerOperator": "GreaterThan",
"triggerThreshold": 0
},
"type": "Microsoft.OperationalInsights/workspaces/providers/alertRules"
}
]
}