Microsoft Sentinel Analytic Rules
cloudbrothers.infoAzure Sentinel RepoToggle Dark/Light/Auto modeToggle Dark/Light/Auto modeToggle Dark/Light/Auto modeBack to homepage

Firewall rule manipulation attempts stateful anomaly on database

Back
Id05030ca6-ef66-42ca-b672-2e84d4aaf5d7
RulenameFirewall rule manipulation attempts stateful anomaly on database
DescriptionThis query detects batches of distinct SQL queries that execute (or attempt to) commands that could indicate potential security issues - such as attempts to manipulate firewall rules (e.g. for allowing malicious access to the database).
SeverityMedium
TacticsInitialAccess
TechniquesT1190
Required data connectorsAzureSql
KindScheduled
Query frequency1h
Query period14d
Trigger threshold0
Trigger operatorgt
Source Urihttps://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Azure SQL Database solution for sentinel/Analytic Rules/Detection-HotwordsFirewallRuleStatefulAnomalyOnDatabase.yaml
Version1.1.1
Arm template05030ca6-ef66-42ca-b672-2e84d4aaf5d7.json
Deploy To Azure
let monitoredStatementsThreshold = 1;           // Minimal number of monitored statements in the slice to trigger an anomaly.
let trainingSlicesThreshold = 5;                // The maximal amount of slices with monitored statements in the training window before anomaly detection is throttled.
let timeSliceSize = 1h;                         // The size of the single timeSlice for individual aggregation.
let detectionWindow = 1h;                       // The size of the recent detection window for detecting anomalies.  
let trainingWindow = detectionWindow + 14d;     // The size of the training window before the detection window for learning the normal state.
let hotwords = pack_array('sp_set_firewall_rule', 'sp_set_database_firewall_rule', 'sp_delete_database_firewall_rule', 'sp_delete_firewall_rule', 'sys.firewall_rules', 'sys.database_firewall_rules'); // List of monitored hot words.
let processedData = materialize (
    AzureDiagnostics
    | where TimeGenerated >= ago(trainingWindow)
    | where Category == 'SQLSecurityAuditEvents' and action_id_s has_any ("RCM", "BCM") // Keep only SQL affected rows
    | project TimeGenerated, PrincipalName = server_principal_name_s, ClientIp = client_ip_s, HostName = host_name_s, ResourceId,
              ApplicationName = application_name_s, ActionName = action_name_s, Database = strcat(LogicalServerName_s, '/', database_name_s),
              IsSuccess = succeeded_s, AffectedRows = affected_rows_d,
              ResponseRows = response_rows_d, Statement = statement_s,
              Error = case( additional_information_s has 'error_code', toint(extract("<error_code>([0-9.]+)", 1, additional_information_s))
                    , additional_information_s has 'failure_reason', toint(extract("<failure_reason>Err ([0-9.]+)", 1, additional_information_s))
                    , 0),
              State = case( additional_information_s has 'error_state', toint(extract("<error_state>([0-9.]+)", 1, additional_information_s))
                    , additional_information_s has 'failure_reason', toint(extract("<failure_reason>Err ([0-9.]+), Level ([0-9.]+)", 2, additional_information_s))
                    , 0),
              AdditionalInfo = additional_information_s, timeSlice = floor(TimeGenerated, timeSliceSize)
    | extend hasHotword = iff(Statement has_any (hotwords), 1, 0)
    | summarize countEvents = count(), countStatements = dcount(Statement)
        , countStatementsWithHotwords = dcountif(Statement, hasHotword == 1)
        , countFailedStatementsWithHotwords = dcountif(Statement, (hasHotword == 1) and (Error > 0))
        , countSuccessfulStatementsWithHotwords = dcountif(Statement, ((hasHotword == 1)) and (Error == 0))
        , anyMonitoredStatement = anyif(Statement, (hasHotword == 1))
        , anySuccessfulMonitoredStatement = anyif(Statement, (hasHotword == 1) and (Error == 0))
        , anyInfo = anyif(AdditionalInfo, hasHotword == 1)
        , hotWord = anyif(extract(strcat_array(hotwords, '|'), 0, tolower(Statement)), hasHotword == 1)
        by Database, ClientIp, ApplicationName, PrincipalName, timeSlice,HostName,ResourceId    
    | extend WindowType = case( timeSlice >= ago(detectionWindow), 'detection',
                                           (ago(trainingWindow) <= timeSlice and timeSlice < ago(detectionWindow)), 'training', 'other')
    | where WindowType in ('detection', 'training'));
let trainingSet =
    processedData
    | where WindowType == 'training'
    | summarize countSlicesWithHotwords = dcountif(timeSlice, countStatementsWithHotwords >= monitoredStatementsThreshold)
        by Database;
processedData
| where WindowType == 'detection' 
| join kind = inner (trainingSet) on Database
| extend IsHotwordAnomalyOnStatement = iff(((countStatementsWithHotwords >= monitoredStatementsThreshold) and (countSlicesWithHotwords <= trainingSlicesThreshold)), true, false)
    , anomalyScore = round(countStatementsWithHotwords/monitoredStatementsThreshold, 0)
| where IsHotwordAnomalyOnStatement == 'true'
| sort by countSuccessfulStatementsWithHotwords desc,  anomalyScore desc, timeSlice desc
| extend Name = tostring(split(PrincipalName,'@',0)[0]), UPNSuffix = tostring(split(PrincipalName,'@',1)[0])    
kind: Scheduled
relevantTechniques:
- T1190
description: |
    'This query detects batches of distinct SQL queries that execute (or attempt to) commands that could indicate potential security issues - such as attempts to manipulate firewall rules (e.g. for allowing malicious access to the database).'
queryPeriod: 14d
queryFrequency: 1h
tactics:
- InitialAccess
name: Firewall rule manipulation attempts stateful anomaly on database
requiredDataConnectors:
- connectorId: AzureSql
  dataTypes:
  - AzureDiagnostics
entityMappings:
- entityType: Account
  fieldMappings:
  - identifier: Name
    columnName: Name
  - identifier: UPNSuffix
    columnName: UPNSuffix
- entityType: IP
  fieldMappings:
  - identifier: Address
    columnName: ClientIp
- entityType: Host
  fieldMappings:
  - identifier: HostName
    columnName: HostName
- entityType: CloudApplication
  fieldMappings:
  - identifier: Name
    columnName: ApplicationName
- entityType: AzureResource
  fieldMappings:
  - identifier: ResourceId
    columnName: ResourceId
triggerThreshold: 0
OriginalUri: https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Azure SQL Database solution for sentinel/Analytic Rules/Detection-HotwordsFirewallRuleStatefulAnomalyOnDatabase.yaml
version: 1.1.1
id: 05030ca6-ef66-42ca-b672-2e84d4aaf5d7
query: |
  let monitoredStatementsThreshold = 1;           // Minimal number of monitored statements in the slice to trigger an anomaly.
  let trainingSlicesThreshold = 5;                // The maximal amount of slices with monitored statements in the training window before anomaly detection is throttled.
  let timeSliceSize = 1h;                         // The size of the single timeSlice for individual aggregation.
  let detectionWindow = 1h;                       // The size of the recent detection window for detecting anomalies.  
  let trainingWindow = detectionWindow + 14d;     // The size of the training window before the detection window for learning the normal state.
  let hotwords = pack_array('sp_set_firewall_rule', 'sp_set_database_firewall_rule', 'sp_delete_database_firewall_rule', 'sp_delete_firewall_rule', 'sys.firewall_rules', 'sys.database_firewall_rules'); // List of monitored hot words.
  let processedData = materialize (
      AzureDiagnostics
      | where TimeGenerated >= ago(trainingWindow)
      | where Category == 'SQLSecurityAuditEvents' and action_id_s has_any ("RCM", "BCM") // Keep only SQL affected rows
      | project TimeGenerated, PrincipalName = server_principal_name_s, ClientIp = client_ip_s, HostName = host_name_s, ResourceId,
                ApplicationName = application_name_s, ActionName = action_name_s, Database = strcat(LogicalServerName_s, '/', database_name_s),
                IsSuccess = succeeded_s, AffectedRows = affected_rows_d,
                ResponseRows = response_rows_d, Statement = statement_s,
                Error = case( additional_information_s has 'error_code', toint(extract("<error_code>([0-9.]+)", 1, additional_information_s))
                      , additional_information_s has 'failure_reason', toint(extract("<failure_reason>Err ([0-9.]+)", 1, additional_information_s))
                      , 0),
                State = case( additional_information_s has 'error_state', toint(extract("<error_state>([0-9.]+)", 1, additional_information_s))
                      , additional_information_s has 'failure_reason', toint(extract("<failure_reason>Err ([0-9.]+), Level ([0-9.]+)", 2, additional_information_s))
                      , 0),
                AdditionalInfo = additional_information_s, timeSlice = floor(TimeGenerated, timeSliceSize)
      | extend hasHotword = iff(Statement has_any (hotwords), 1, 0)
      | summarize countEvents = count(), countStatements = dcount(Statement)
          , countStatementsWithHotwords = dcountif(Statement, hasHotword == 1)
          , countFailedStatementsWithHotwords = dcountif(Statement, (hasHotword == 1) and (Error > 0))
          , countSuccessfulStatementsWithHotwords = dcountif(Statement, ((hasHotword == 1)) and (Error == 0))
          , anyMonitoredStatement = anyif(Statement, (hasHotword == 1))
          , anySuccessfulMonitoredStatement = anyif(Statement, (hasHotword == 1) and (Error == 0))
          , anyInfo = anyif(AdditionalInfo, hasHotword == 1)
          , hotWord = anyif(extract(strcat_array(hotwords, '|'), 0, tolower(Statement)), hasHotword == 1)
          by Database, ClientIp, ApplicationName, PrincipalName, timeSlice,HostName,ResourceId    
      | extend WindowType = case( timeSlice >= ago(detectionWindow), 'detection',
                                             (ago(trainingWindow) <= timeSlice and timeSlice < ago(detectionWindow)), 'training', 'other')
      | where WindowType in ('detection', 'training'));
  let trainingSet =
      processedData
      | where WindowType == 'training'
      | summarize countSlicesWithHotwords = dcountif(timeSlice, countStatementsWithHotwords >= monitoredStatementsThreshold)
          by Database;
  processedData
  | where WindowType == 'detection' 
  | join kind = inner (trainingSet) on Database
  | extend IsHotwordAnomalyOnStatement = iff(((countStatementsWithHotwords >= monitoredStatementsThreshold) and (countSlicesWithHotwords <= trainingSlicesThreshold)), true, false)
      , anomalyScore = round(countStatementsWithHotwords/monitoredStatementsThreshold, 0)
  | where IsHotwordAnomalyOnStatement == 'true'
  | sort by countSuccessfulStatementsWithHotwords desc,  anomalyScore desc, timeSlice desc
  | extend Name = tostring(split(PrincipalName,'@',0)[0]), UPNSuffix = tostring(split(PrincipalName,'@',1)[0])      
status: Available
triggerOperator: gt
tags:
- SQL
severity: Medium
{
  "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
  "contentVersion": "1.0.0.0",
  "parameters": {
    "workspace": {
      "type": "String"
    }
  },
  "resources": [
    {
      "apiVersion": "2024-01-01-preview",
      "id": "[concat(resourceId('Microsoft.OperationalInsights/workspaces/providers', parameters('workspace'), 'Microsoft.SecurityInsights'),'/alertRules/05030ca6-ef66-42ca-b672-2e84d4aaf5d7')]",
      "kind": "Scheduled",
      "name": "[concat(parameters('workspace'),'/Microsoft.SecurityInsights/05030ca6-ef66-42ca-b672-2e84d4aaf5d7')]",
      "properties": {
        "alertRuleTemplateName": "05030ca6-ef66-42ca-b672-2e84d4aaf5d7",
        "customDetails": null,
        "description": "'This query detects batches of distinct SQL queries that execute (or attempt to) commands that could indicate potential security issues - such as attempts to manipulate firewall rules (e.g. for allowing malicious access to the database).'\n",
        "displayName": "Firewall rule manipulation attempts stateful anomaly on database",
        "enabled": true,
        "entityMappings": [
          {
            "entityType": "Account",
            "fieldMappings": [
              {
                "columnName": "Name",
                "identifier": "Name"
              },
              {
                "columnName": "UPNSuffix",
                "identifier": "UPNSuffix"
              }
            ]
          },
          {
            "entityType": "IP",
            "fieldMappings": [
              {
                "columnName": "ClientIp",
                "identifier": "Address"
              }
            ]
          },
          {
            "entityType": "Host",
            "fieldMappings": [
              {
                "columnName": "HostName",
                "identifier": "HostName"
              }
            ]
          },
          {
            "entityType": "CloudApplication",
            "fieldMappings": [
              {
                "columnName": "ApplicationName",
                "identifier": "Name"
              }
            ]
          },
          {
            "entityType": "AzureResource",
            "fieldMappings": [
              {
                "columnName": "ResourceId",
                "identifier": "ResourceId"
              }
            ]
          }
        ],
        "OriginalUri": "https://github.com/Azure/Azure-Sentinel/blob/master/Solutions/Azure SQL Database solution for sentinel/Analytic Rules/Detection-HotwordsFirewallRuleStatefulAnomalyOnDatabase.yaml",
        "query": "let monitoredStatementsThreshold = 1;           // Minimal number of monitored statements in the slice to trigger an anomaly.\nlet trainingSlicesThreshold = 5;                // The maximal amount of slices with monitored statements in the training window before anomaly detection is throttled.\nlet timeSliceSize = 1h;                         // The size of the single timeSlice for individual aggregation.\nlet detectionWindow = 1h;                       // The size of the recent detection window for detecting anomalies.  \nlet trainingWindow = detectionWindow + 14d;     // The size of the training window before the detection window for learning the normal state.\nlet hotwords = pack_array('sp_set_firewall_rule', 'sp_set_database_firewall_rule', 'sp_delete_database_firewall_rule', 'sp_delete_firewall_rule', 'sys.firewall_rules', 'sys.database_firewall_rules'); // List of monitored hot words.\nlet processedData = materialize (\n    AzureDiagnostics\n    | where TimeGenerated >= ago(trainingWindow)\n    | where Category == 'SQLSecurityAuditEvents' and action_id_s has_any (\"RCM\", \"BCM\") // Keep only SQL affected rows\n    | project TimeGenerated, PrincipalName = server_principal_name_s, ClientIp = client_ip_s, HostName = host_name_s, ResourceId,\n              ApplicationName = application_name_s, ActionName = action_name_s, Database = strcat(LogicalServerName_s, '/', database_name_s),\n              IsSuccess = succeeded_s, AffectedRows = affected_rows_d,\n              ResponseRows = response_rows_d, Statement = statement_s,\n              Error = case( additional_information_s has 'error_code', toint(extract(\"<error_code>([0-9.]+)\", 1, additional_information_s))\n                    , additional_information_s has 'failure_reason', toint(extract(\"<failure_reason>Err ([0-9.]+)\", 1, additional_information_s))\n                    , 0),\n              State = case( additional_information_s has 'error_state', toint(extract(\"<error_state>([0-9.]+)\", 1, additional_information_s))\n                    , additional_information_s has 'failure_reason', toint(extract(\"<failure_reason>Err ([0-9.]+), Level ([0-9.]+)\", 2, additional_information_s))\n                    , 0),\n              AdditionalInfo = additional_information_s, timeSlice = floor(TimeGenerated, timeSliceSize)\n    | extend hasHotword = iff(Statement has_any (hotwords), 1, 0)\n    | summarize countEvents = count(), countStatements = dcount(Statement)\n        , countStatementsWithHotwords = dcountif(Statement, hasHotword == 1)\n        , countFailedStatementsWithHotwords = dcountif(Statement, (hasHotword == 1) and (Error > 0))\n        , countSuccessfulStatementsWithHotwords = dcountif(Statement, ((hasHotword == 1)) and (Error == 0))\n        , anyMonitoredStatement = anyif(Statement, (hasHotword == 1))\n        , anySuccessfulMonitoredStatement = anyif(Statement, (hasHotword == 1) and (Error == 0))\n        , anyInfo = anyif(AdditionalInfo, hasHotword == 1)\n        , hotWord = anyif(extract(strcat_array(hotwords, '|'), 0, tolower(Statement)), hasHotword == 1)\n        by Database, ClientIp, ApplicationName, PrincipalName, timeSlice,HostName,ResourceId    \n    | extend WindowType = case( timeSlice >= ago(detectionWindow), 'detection',\n                                           (ago(trainingWindow) <= timeSlice and timeSlice < ago(detectionWindow)), 'training', 'other')\n    | where WindowType in ('detection', 'training'));\nlet trainingSet =\n    processedData\n    | where WindowType == 'training'\n    | summarize countSlicesWithHotwords = dcountif(timeSlice, countStatementsWithHotwords >= monitoredStatementsThreshold)\n        by Database;\nprocessedData\n| where WindowType == 'detection' \n| join kind = inner (trainingSet) on Database\n| extend IsHotwordAnomalyOnStatement = iff(((countStatementsWithHotwords >= monitoredStatementsThreshold) and (countSlicesWithHotwords <= trainingSlicesThreshold)), true, false)\n    , anomalyScore = round(countStatementsWithHotwords/monitoredStatementsThreshold, 0)\n| where IsHotwordAnomalyOnStatement == 'true'\n| sort by countSuccessfulStatementsWithHotwords desc,  anomalyScore desc, timeSlice desc\n| extend Name = tostring(split(PrincipalName,'@',0)[0]), UPNSuffix = tostring(split(PrincipalName,'@',1)[0])    \n",
        "queryFrequency": "PT1H",
        "queryPeriod": "P14D",
        "severity": "Medium",
        "status": "Available",
        "subTechniques": [],
        "suppressionDuration": "PT1H",
        "suppressionEnabled": false,
        "tactics": [
          "InitialAccess"
        ],
        "tags": [
          "SQL"
        ],
        "techniques": [
          "T1190"
        ],
        "templateVersion": "1.1.1",
        "triggerOperator": "GreaterThan",
        "triggerThreshold": 0
      },
      "type": "Microsoft.OperationalInsights/workspaces/providers/alertRules"
    }
  ]
}